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When we reason about change over time, causation provides an implicit 
preference: we prefer sequences of situations in which one situation 
leads causally to the next, rather than sequences in which one situa- 
tion follows another at random and without causal connections. In this 
paper, we explore the problem of temporal reasoning—reasoning about 
change over time—and the crucial role that causation plays in our in- 
tuitions. We examine previous approaches to temporal reasoning, and 
their shortcomings, in light of this analysis. We propose a new system 
for causal reasoning, motivated action theory, which builds upon cau- 
sation as a crucial preference criterion. Motivated action theory solves 
the traditional problems of both forward and backward reasoning, and 
additionally provides a basis for a new theory of explanation. 
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L. A. Stein and L. Morgenstern Motivated Action Theory 1 

1    Introduction 

In this paper, we explore temporal reasoning: reasoning about how things 
change over time. We concentrate on temporal reasoning problems presented 
as "stories," or descriptions of events. Temporal ambiguity arises when mul- 
tiple sequences of situations are consistent with the description presented. 
For example, leaving freshly baked cookies in the kitchen leaves open (i.e. 
ambiguous) the question of whether they will be there in an hour, partic- 
ularly in the presence of known cookie thieves. The possible sequences of 
situations here include those in which the cookies remain in the kitchen, and 

those in which the thief absconds with them. 
The space of possible interpretations, then, is the set of situation- 

sequences consistent with the problem description. Temporal reasoning pro- 
vides an implicit preference over these sequences of situations in the form 
of causation: we prefer sequences of situations in which one situation leads 
causally to the next, rather than sequences in which one situation follows 
another at random and without causal connection. For example, we prefer 
sequences in which the thieves steal the cookies to sequences in which the 
cookies disappear without explanation, although not necessarily to sequences 
in which the cookies remain in the kitchen. 

We begin, in section 2, with an exploration of temporal reasoning. We 
describe both the formal language that we use in the remainder of this paper, 
and the temporal reasoning problems with which we shall be concerned. 
Throughout the paper, we shall make use of the notions defined there. 

In section 3, we turn to a review of early approaches to the problem. 
The initial discussion of temporal reasoning was in a monotonic framework; 
researchers quickly acknowledged the need for some form of defeasible tem- 
poral reasoning. However, the combination of temporal and nonmonotonic 
reasoning proved problematic. We examine Hanks and McDermott's Yale 
shooting problem, which describes the results of these naive extensions of 
nonmonotonic reasoning to reasoning over time. The Yale shooting problem 
demonstrates that the early approaches introduce unexpected ambiguities, 
in the form of implausible sequences of situations.   We conclude this sec- .——_ 
tion with the claim that nonmonotonic temporal theories must provide some  * ?or 

notion of causation. *■"• 3 
In section 4, we use this principle—that causation provides a disambiguat-                   LJ 

ing preference over possible sequences of situations—to analyze several previ-; at ion __ 

itio»/i*'v 
* 

iiVfa^aftllity 
Avail ®s&/er 

Special 

■Tm ■4<ß 



L. A. Stein and L. Morgenstern Motivated Action Theory 

ous approaches to temporal reasoning. By focusing on their approximations 
of causation, we assess the extent to which these approaches adequately re- 
solve temporal ambiguities. 

The deficiencies of previous theories lead us to present motivated action 
theory, a theory of defeasible temporal reasoning that integrates causation 
as primitive. Because it relies directly on causation, motivated action theory 
handles the full range of temporal reasoning problems described in section 2 
without reliance on limited temporal ontologies such as the situation calcu- 
lus. Its causal nature further provides the basis for a theory of explanation. 
We initially define motivated action theory as a model-theoretic preference- 
based logic. After demonstrating the adequacy of the theory, we present an 
equivalent proof-theoretic definition together with soundness and complete- 
ness results. 

2    Reasoning over Time 

Temporal reasoning is reasoning about change over time. Typically, temporal 
reasoning problems are phrased as a set of action occurrences and state de- 
scriptions, coupled with some background knowledge about how actions cause 
change. The background, or domain knowledge, remains constant, while the 
events and states vary from scenario to scenario. For example, a prediction 
problem may involve description of an initial situation and a sequence of prediction 
actions taking place in or after that initial situation. Using the background 
knowledge, a reasoner is expected to predict the results of performing these 
actions, or to describe certain details of the resulting state. 

A simple prediction problem might be expressed as follows: 

A line of dominos is arranged on the table. Someone knocks over 
the first domino. 

The domain knowledge here includes the facts about one domino knocking 
down the next. The expected answer involves recognizing that the entire line 
of dominos falls down. K, for instance, the last domino's fall will cause a bell 
to ring, the expected outcome includes the ringing of the bell. 

In contrast, backwards projection problems take the form of "what is backwards 
missing" queries: given some result, the reasoner is expected to identify an projection 
action or state which could have led to that action. 
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Again, a line of dominos is arranged on the table, and someone 
knocks down the first. This time, the last domino does not fall. 

What happened? 

Here, depending on the background knowledge, an answer such as "someone 
stopped the dominos" or "they were too far apart" might be expected. By 
filling in the missing information, further projections may be made. 

In both of these types of problems, the facts of the situation, together 
with the background knowledge, delimit possible sequences of situations. In 
the next section, we describe a formal language for talking about temporal 
reasoning problems. 

2.1     The Temporal Language 

In this section, we describe a language for temporal scenarios. The language 
itself is not a logic, in the sense that it provides no inference rules. We give 
intended interpretations for some of the terms of our language, but we leave 
it to later sections, which describe various theories of temporal reasoning, to 
enforce these interpretations through particular rules of inference. 

We have borrowed many of our ideas from Hanks and McDermott's [10] 
presentation of McDermott's temporal logic [23], although we have taken 
several liberties with that language. The ontology also shares features of 
McCarthy and Hayes's situation calculus [22], although we allow any number 
of actions to occur between situations. In this respect, it resembles the 
language defined by Haugh in [13]. 

Several considerably more sophisticated temporal ontologies have been 
described in the literature (e.g., Allen's interval logic [3]; Hayes's histo- 
ries [14]; McDermott's full temporal logic [23]; Shoham's modal system [32]). 
However, the naive ontology that we present here is sufficient to describe the 
salient features of most nonmonotonic approaches to temporal reasoning, and 
to demonstrate our claims with respect to the importance of causation. In- 
deed, the problems that arise in this ontology would only worsen in a more 
sophisticated logic, and the need for some adequate notion of causation would 

only be strengthened. 
In our ontology, a point in time defines a particular world situation. This 

situation is expressed as a set of state/value pairs: (alive, T); (on(a,b), X); 
(color(house),red).   Although the complete state of the world can be ex- 

situation 
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TIME 
STATE 
action 

pressed by enumerating these pairs, in general we only want to describe 
a portion of this state. We use the notation HOLDS(t.state) to mean HOLDS 
that state has the value T in the situation with index t. We further 
define -nHOLDS(t, state) = HOLDS(t,not(state)) = state has the value 

J_ in the situation with index t; also HOLDS(t,statei and state2) = 

HOLDS(t, {state!,state2» = [HOLDS(t,stated A HOLDS(t,state2)] = 
{HOLDS(t,state1),HOLDS(t,state2)}.1 By a slight abuse of notation, 
we use "predicate" notation to express states with non-boolean value: 
HOLDS(t,color(house,red)) means color(house) has the value red in the 
situation with index t, and HOLDS(t,not(color(house,red))) if the value 
of color(house) is not red in the situation with index t.2 We say that 
TIME(HOLDS(t,state)) = t; similarly, STATE(HOLDS(t,state)) = state. 

The world moves from one situation to the next through actions. For 
example, a load action takes us from a situation in which a gun is not loaded 
(-<HOLDS(t, loaded)) to a successor situation in which the gun is loaded 
(HOLDS(t + 1,loaded)). Although we index situations by integers, we do 
not insist that there be a fixed time interval between situations. For ex- 
ample, the time elapsed between to and ti may not equal the time elapsed 
between ti and t2. We use the notation OCCURS(t.act) to mean that action OCCURS 
act occurs in the situation with index t; the resulting situation is t +1. While 
actions provide transitions over situations, we do not insist that a single ac- 
tion occur in every situation. That is, we allow both concurrent actions—two 
or more actions simultaneously providing a transition between situations t 
and t + 1—or no action at all. When two or more actions occur concurrently, 
they are constrained to take the same amount of time. The result of no ac- 
tion in a situation is presumably a situation very much like the previous one, 
although time has changed, the earth has rotated, etc. We also allow state- 
ments of the form -IOCCU RS(t, act), which explicitly excludes any occurrence 
of act in the situation with index t. We define TIME(OCCURS(t,act)) = t 
and ACT(OCCURS(t,act)) = act. ACT 

1 Throughout this paper, we treat sets and conjunctions interchangeably. 
2The careful reader will note that color(house,scarlet) will yield not(color(house,red)), 

even if red = scarlet. We can fix this by allowing multivalued, or set-valued, state; or 
by rigid designators; or by treating color(house.red) as a boolean-valued state (where 

color(house,red) = color(house, scarlet)). In any case, these details are not important for 
the discussion at hand. 
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To connect situations and actions, we introduce the notation 

CAUSES(preconditions, act, state) 

CAUSES 

(1) 

Intuitively, this means that if preconditions holds when act occurs, then state 
will hold in the resulting situation. We allow preconditions to be a set (i.e., 
a conjunction), so that we can have multiple preconditions; multiple conse- 
quences can be represented using several CAUSES statements. For example, 
the definition of blocks world's move might read 

CAUSES({clear(a), clear(b)}, move(a, b), on(a, b)) (2) 

Particular logics for temporal reasoning may enforce the use of CAUSES in 
different ways; however, each logic must somehow translate the intuitions 
expressed by CAUSES into axioms or rules of inference. We call these trans- 

lations causal rules. 
In addition to causal rules, which tell us what changes between one sit- 

uation and the next, a temporal reasoning formalism must somehow enforce 
the persistence of those facts that do not change. We discuss some details 
of this problem, called the frame problem, below.3 However, the basic issue 
can be stated in terms of the notation that we have already introduced: If 
HOLDS(t.state), how do we determine whether HOLDS(t',state), for some 
t' > t? Rules—defeasible or deductive—which enforce this constraint are 

called persistence rules. 

2.2    Temporal Reasoning Problems 

The temporal reasoning problems we have described include two parts: a 
particular description of situations and events, and a "background" causal 
theory against which this description is to be evaluated. In general, a sin- 
gle background theory provides the temporal model for several "stories," or 
scenarios; a reasoner may well have a fixed temporal theory representing its 
"understanding" of causality. We refer to this background information as the 
theory, and to the particular scenario as the chronicle description. A theory 
and a chronicle description together are known as a theory instantiation, TI. 

The chronicle description, CD, is a set of specific HOLDS or OCCURS 
3For a more extensive discussion of the frame problem, see, e.g., Brown [6] or Ford and 

Hayes [7]. 

causal rules 

persistence 
rules 

TI 
CD 



L. A. Stein and L. Morgenstern Motivated Action Theory 

tablei table2 

Figure 1: A blocks-world scenario. 

statements. Intuitively, it represents a description of some particular sce- 
nario. It may include a partial or complete description of an initial situation, 
or of various states at later time points. It may also list some set of actions 
that occur. For example, the blocks world situation in figure 1 is completely 
described by 

HOLDS(l,on(a,b)) HOLDS(l,on(b,c)) 

HOLDS(l,on(c,tablei)   HOLDS(l,on(d,table2)) 
HOLDS(l,clear(a)) HOLDS(l,clear(d)) 

At a later point, we may know that 

H0LDS(7,clear(b)) 

A description of events in situation (3) might include 

OCCURS(1, move(a, d)) A OCCURS(3, move(b,a)) 

or 

(3) 

(4) 

(5) 

3t > 1.0CCURS(t, move(d, a)) V OCCURS(t, move(a,d)) (6) 

The sentences of CD contain no universally quantified temporal variables.4 
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The background theory, T, consists of the "generic" knowledge which 
is true in every situation. This may include CAUSES statements, causal 
and persistence rules, and axioms describing other generic relationships: 
HOLDS(t,alive) iff HOLDS(t,not(dead)), for example. A blocks world back- 
ground theory might include rules such as 

Vt,a,b.HOLDS(t,clear(a))AHOLDS(t,clear(b)) (rj) 

AOCCURS(t,move(a, b)) D HOLDS(t + 1,on(a,b)) 

and 

Vt,b.HOLDS(t,clear(b))=[Va.-HOLDS(t,on(a,b))] (8) 

A rule for the persistence of knowledge—generally known as memory—might 

say 

Vt, a, p.HOLDS(t, Knows(a,p)) D HOLDS(t + 1, Knows(a,p)) (9) 

where Knows(a.p) asserts that a knows the fact p. We shall have more to 
say about persistence rules below. 

There are several types of temporal reasoning problems that we shall 
consider below. One major distinction that can be made concerns the rela- 
tionship of the times about which we are given information to the time about 
which we must derive information. If a temporal reasoning problem requires 
us to describe some aspect of a situation later than any time point in CD, the 
problem is one of prediction. If the query concerns some intermediate point 
in CD, or some point earlier than any occurring in CD, the problem is one of 
backwards projection. Typically, backwards projection problems have proved 
difficult for temporal reasoning systems that make overly strong assumptions 
about the structure of events and time. We discuss some such systems in 
section 4. 

Temporal reasoning, then, can be seen as the problem of deducing which 
sequences of situations "make sense." Our thesis is that we prefer sequences 
of situations that accord with our notion of causation; that is, where one 

Sentences with universally quantified temporal variables are general laws which should 
appear in T. Examples include rules (??)-(??), below. Sentences which quantify over 
fixed intervals, such as "That March, she lived in Paris," may either be formalized as 
Vt, tMarl91 < t < tMar3191.HOLDS(t, Lives(Cecilia, Paris)) and included in T or treated as 
abbreviations for finite conjunctions in CD. 
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situation leads to another causally, rather than those in which situations 
follow one another at random. In the remainder of this chapter, we describe 
various attempts to define this preference formally. 

3    Nonmonotonic Reasoning and Time 

One of the earliest approaches to temporal reasoning in artificial intelligence 
is that of McCarthy and Hayes [22]. They introduce the situation calculus as 
a formalism for describing actions over time. As a consequence of their for- 
malization of temporal reasoning, they discovered the frame problem: know- frame 
ing what is true in a situation, and knowing what action has taken place, problem 
does not necessarily mean that we know what is true in the resulting situa- 
tion. For example, the situation calculus as originally defined lacks any way 
to verify that moving block a onto block b does not change the location of 
block c. McCarthy and Hayes propose that this frame problem can be solved 
through the use of monotonic frame axioms. These axioms express the idea 
that only those states that are explicitly changed by an action change when 
that act is performed. 

Unfortunately, frame axioms are not an adequate solution to the frame 
problem. McDermott [24, 25] has observed that, as naively implemented— 
e.g., asserting that c's location does not change during move(a,b)—frame 
axioms are simply false. For example, c might really be another name for 
a. Or a and c might be connected, so that moving a might force c to move 
as well (this variation is due to Ginsberg and Smith [9]). Or, if concurrent 
actions are allowed, while we move a onto b, someone else might move c. 
In short, we cannot a priori guarantee that the location of c will remain 
unchanged in the situation resulting from move(a,b). 

Essentially, frame axioms are an attempt to capture the following law of 
inertia: 

Vt, act, preconditions, state 
[(-<CAUSES(preconditions,act, not(state))) /1Qx 

V(-OCCURS(t,act)) V (-HOLDS(t, preconditions))}    ' 
D[HOLDS(t, state) DHOLDS(t + l, state] 

This says that if either (1) there is no causal rule yielding not(state) or (2) 
the action causing not(state) doesn't occur or (3) its preconditions aren't 
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satisfied, then state persists. Simply adding an axiom of this form is no 
better than frame axioms: we still need to defeosibly rule out unexpected 
causal connections (clause (1)) and action occurrences (clause (2)), and we 
need to make default assumptions about state (clause (3)), particularly when 
we have incomplete information. Nonetheless, inertia—and frame axioms— 
point in the right direction, and we will return to them below. 

These early attempts to formalize temporal reasoning quickly led to the 
realization that some form of nonmonotonic reasoning would be necessary. 
For example, McDermott assumes some appropriate nonmonotonic logic in 
describing his temporal logic [23]; McCarthy presents temporal reasoning as 
an application of circumscription [20, 21]; Reiter uses temporal reasoning as 
a motivating example for his default logic [29]. Indeed, early approaches to 
both nonmonotonic and temporal reasoning simply assumed that it would 
eventually be possible to take a suitable temporal logic and "plug in" some 
nonmonotonic logic to achieve nonmonotonic temporal reasoning. 

In [10, 11, 12], Hanks and McDermott present the Yale shooting problem. 
This seemingly simple temporal reasoning problem proved notoriously diffi- 
cult for classical nonmonotonic logics. The Yale shooting problem—restated 
in our ontology—consists of the chronicle 

HOLDS(l,alive) A HOLDS(l, loaded) A OCCURS(2,shoot) (11) 

coupled with the background theory 

CAUSES(loaded,shoot, not(alive)) (12) 

which compiles into 

Vt.OCCURS(t,shoot) A HOLDS(t, loaded) D-HOLDS(t + 1,alive)   (13) 

and persistence rules indicating that loaded, alive, -^loaded, and ->alive con- 
tinue to hold (unless explicitly changed). We deliberately omit the particu- 
lar form of these persistences, since they depend on the nonmonotonic logic 
in which the Yale shooting problem is expressed. Hanks and McDermott 
give the appropriate persistence rules and demonstrate that this anomaly 
arises for three "standard" nonmonotonic logics: McCarthy's circumscrip- 
tion [20], McDermott and Doyle's nonmonotonic logic [26], and Reiter's De- 

fault Logic [29]. 
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We would like to predict -iHOLDS(3, alive). Relative to the standard 
non-monotonic logics, however, the chronicle description supports (at least) 
two models: the expected one, in which one reasons by default that 
HOLDS(2,loaded), and in which ->HOLDS(3, alive); and an unexpected model, 
in which one reasons from the persistence rules that HOLDS(3,alive), and in 
which, therefore, -iHOLDS(2, loaded). Standard non-monotonic logic gives us 
no way of preferring the expected, intuitively correct model to the unexpected 
model. 

Hanks and McDermott argue that the Yale shooting problem sounds 
the death knell for nonmonotonic logics. They claim that the inability of 
general-purpose nonmonotonic logics to resolve basic temporal ambiguities 
proves that nonmonotonic logic as an endeavor is doomed to failure. For- 
tunately, the perspective of time allows us to better understand and restate 
their pessimistic conclusions.5 The problem in the Yale shooting problem 
is not that general nonmonotonic logics can't do general nonmonotonic rea- 
soning, but that temporal reasoning is not general nonmonotonic reasoning. 
Temporal reasoning involves a specific kind of ambiguity—temporal ambi- 
guity, or ambiguity over sequences of situations—and temporal ambiguity 
comes tailor-made with its own preference criterion: causation. When rea- 
soning about temporal problems, we prefer sequences of situations in which 
one situation leads causally to the next—as in the expected model—rather 
than sequences in which one situation follows another at random and without 
causal connection—as when the gun becomes, inexplicably, unloaded. The 
problem with using general-purpose nonmonotonic logics to perform tempo- 
ral reasoning is that these logics contain no inherent notion of causation. 

In the next section, we look at several attempts to solve the Yale shooting 
problem. Each works, in some sense, by trying to build a notion approximat- 
ing causation into nonmonotonic logic. By comparing their approximations 
of causation with our intuitions, we can see the extent to which these solu- 
tions succeed, and the extent to which they fall short of our expectations. In 
section 5, we present motivated action theory, a theory of causal reasoning 
whose development was motivated by this view that causation provides an 
ambiguity-resolving preference over sequences of situations. 

5To be perfectly fair, even Hanks and McDermott [11, 12] don't agree with Hanks and 
McDermott [10]; in their later writings, they agree that their initial conclusions were overly 
pessimistic. 
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4    Comparisons of Existing Theories 

The first attempts to solve the Yale shooting problem are often divided 
into two categories: those that concentrate on the structure of time, and 
those that focus on cause-and-effect. The two approaches appear divergent; 
nonetheless, motivated action theory (section 5) can be seen as a successor 

to both. 

4.1    Chronological Approaches 

Hanks and McDermott [10, 11, 12] argue that the problem with general 
nonmonotonic logics is their failure to incorporate the notion of time. In 
particular, they claim that time creates an explicit ordering, and temporal 
reasoning is inherently biased towards that ordering. In the Yale shooting 
problem, the expected model arises when we reason about situations in tem- 
poral order: alive and loaded hold at 1, so they will (by default) hold at 2. 
This means that when the gun is fired (at 2), loaded holds, clipping alive 
(so -iHOLDS(3,alive)). In contrast, the unexpected model arises when we 
apply persistence to alive—yielding HOLDS(2,alive) and HOLDS(3,alive)— 
before we have reached any conclusion about loaded at 2. HOLDS(3,alive) 
and OCCURS(2,shoot) now force us to reason backwards about loaded—it 
must be the case (by rule 13) that ^HOLDS(2, loaded). 

Chronological solutions address this particular point. Each of these 
solutions—Hanks and McDermott's program [10], Shoham's logic of chrono- 
logical ignorance [30, 31], Kautz's logic of persistence [15], and temporal ap- 
plications of Lifschitz's pointwise circumscription [16]—describes a reasoning 
system with an inherent forward temporal bias. Each works by considering 
situations in their chronological order, extending as many persistences as 
possible through earlier situations before addressing later situations. This 
approach yields a particular preference over sequences of situations: we pre- 
fer sequences in which changes take place—persistences are clipped—in later 
situations, rather than earlier ones. This in turn leads to the "motto" of 
chronological solutions: we prefer that as little happens for as long as possi- 

ble. 
Hanks and McDermott's program works by updating situations in tem- 

poral order. Thus, in the shooting problem, it analyzes the situation at 
2—by default, alive and loaded persist—and then the situation at 3—since 
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0CCURS(2,shoot) and H0LDS(2,loaded), -H0LDS(3, alive). The underlying 
idea is to postpone changes until they are forced; or, to allow persistences 
to continue for as long as possible. This avoids the anomalous model which 
arises for the standard nonmonotonic logics. 

The three chronological logical approaches essentially mimic the behav- 
ior of Hanks and McDermott's program. Kautz and Lifschitz use circum- 
scription to fix state values in one situation before considering the next; 
Shoham defines a model preference criterion with the same properties. This 
approach minimizes changes to the world; persistences apply whenever pos- 
sible. Changes occur only when actions (with suitable preconditions) force 

them to happen. 

Problems with Chronological Solutions For several reasons, forward 
reasoning solutions are not entirely satisfactory. The most obvious is that 
causation is not merely time-moving-forward. For example, when we are 
performing the "what went wrong" type of reasoning typical of backwards 
projection, we reason from the appearance of an effect backwards in time to 
its possible causes. Consider, for example, a modification of the Yale shooting 

problem, where CD contains 

H0LDS(1, alive)     H0LDS(1, loaded) (u) 

0CCURS(5, shoot)     H0LDS(6, alive) l    ; 

(we have moved the shoot to 5, and added the (unexpected) outcome that 
shooting did not lead to not(alive)). Since alive holds at 6, we know that the 
gun must somehow have become unloaded between times 2 and 5; however, 
we cannot say exactly when this happened. In contrast to this intuition, 
the systems of Shoham and Kautz predict that the gun became unloaded 
between time 4 and time 5. This is because change is postponed for as long 
as possible. Kautz first noted this point when he presented his solution to 

the Yale shooting problem. 
This leads to a second objection to chronological solutions: they do not 

seem to address the real concerns underlying the Yale shooting problem. We 
don't reason that H0LDS(3,not(alive)) because we reason forward in time. We 
reach this conclusion because we are told of an action that causes not(alive), 
but are not told of any action that causes not(loaded). Chronological solutions 
substitute time-moving-forward for causation; but causation, not chrono- 
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logical reasoning, is at the heart of temporal reasoning. Chronological ap- 
proaches work when their preference—changes happen later—coincides with 
causation. These scenarios include the original Yale shooting problem as well 
a larger class, described by Shoham [31], of temporal projection problems. 
But where the two criteria diverge—for example, in backwards projection— 
chronological minimization does not provide an adequate preference criterion 
for resolving temporal ambiguity. 

Here, we pause to examine the reason that chronological solutions do 
work for temporal projection problems. Chronological solutions minimize 
what is true at earlier time points, forcing truths at later points. In fact, 
it turns out that the truths that are minimized are only the changes—the 
action occurrences—and not the states. For example, in the Yale shooting 
problem, it's not not(aiive) or not(loaded) that needs to be put off; it is the 
unload action. That is, unless we know that an unload occurs, we allow 
loaded to persist; later, when we get to the shoot, we are forced to give 
up the persistence of alive. We never minimize state, after all. So we can 
achieve the same result by preferring situations in which actions occur later. 
In this case, we would not add the load action, so shoot would clip alive 
(We can't ever exclude the shoot, since it is in our axiomatization. We can 
only block loaded, so that the shoot does not affect alive). Kautz's logic 
of persistence does exactly this, by explicitly minimizing (circumscribing) 
clippings, or endpoints of persistences. 

Actually, once we have started minimizing actions, it turns out that we 
don't need to minimize them chronologically at all. Minimizing actions solves 
a whole class of temporal reasoning problems, although two specific prob- 
lems with this approach, causal chains and spontaneous actions, remain. 
Nonetheless, the underlying intuition forms the basis of motivated action 
theory (see section 5). We do not prefer that fewer actions happen earlier; 
instead, we prefer that fewer extraneous actions happen. (An extraneous 
action is one that is not forced, either by being explicitly mentioned in the 
axiomatization, or by following directly from the causes mentioned in it). 
Circumscribing actions altogether—preferring those models in which as little 
happens, period—solves the Yale shooting problem. Motivated action theory 
solves the additional problems of spontaneous actions and causal chains by 
excluding motivated—non-extraneous—actions from the minimization. 

This is more in accordance with our intuitions about causation: uncaused 
actions do not happen. When no unmentioned actions are caused, ruling out 
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uncaused actions reduces to ruling out unmentioned actions. When reason- 
ing forward—predicting—this in turn reduces to postponing action commit- 
ments. With this analysis, we an easily see that chronological solutions will 
be adequate for prediction, and minimal-action models for scenarios with no 
unmentioned caused actions. Motivated action theory (section 5) relies on 
our original intuition and so will handle a still broader class of scenarios. 

4.2    Causal Approaches 

The situation calculus as originally conceived by McCarthy and Hayes models 
OCCURS—or Result, as they call it—as a function, mapping an (action, sit- 
uation) pair onto a unique situation. All of the examples in the early papers 
on the situation calculus [19, 22] describe universes in which only one action 
happens at any time. Although the absence of concurrency is not explicitly 
included in the original formalization of the situation calculus, it has been 
implicitly or explicitly assumed in virtually all later work that concurrency 
is not allowed.6 Formally, this restriction may be expressed as 

Vt,act. OCCURS(t,act)   =   [Vact' ^ act. -OCCURS(t,act')]       (15) 

In this case, the problem of determining that no action occurred to unload the 
gun becomes moot; all actions are denned by the transitions from t to t-f 1 to 
t -I- 2, etc. This exposes a second problem: the problem of determining that 
the known actions don't have unusual effects. In the Yale shooting problem, 
the first of these problems is the problem of determining that no action 
occurs in the situation with index 2; the second is the problem of determining 
that the null action—traditionally called wait—which does occur has no side 
effects. The solutions described in this section—Lifschitz's formal theories 
of action [17], Baker and Ginsberg's abnormal-for-state [5], and Haugh's 
causal minimizations [13]—address the second of these problems; Haugh's 
also addresses the first. 

These solutions are not based on forward reasoning strategies. 
Rather, they work by circumscribing over CAUSES(...,act,state). For- 
mally, these theories divide our predicate, CAUSES, into two predicates: 

6In fact, McCarthy and Hayes originally assumed that the situation calculus would be 
able to handle more complex scenarios, including concurrent actions (personal communi- 
cation). For versions of the situation calculus which explicitly permit concurrent actions 
see, e.g., Haugh [13] or Gelfond, Lifschitz, and Rabinov [8]. 
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precond(preconditions,act), and causes(act, state). Circumscribing causes 
means that we prefer sequences of situations in which only those changes 
whose causes are explicitly stated, or those that must follow from the ax- 
ioms, exist. For example, in the Yale shooting problem, circumscribing causes 
limits its extent to causes(shoot,not(alive)). 

Formal Theories of Action In Lifschitz's formal theories of action, which 
makes use of the original situation calculus, exactly one action occurs in each 
situation, and that action is known. To capture the null action which occurs 
in the situation with index 1, a wait action is denned, with no (explicit) causal 
consequences. Circumscribing causes now yields no implicit causal conse- 
quences for wait, so Lifschitz determines that nothing changed during the 
wait action. Thus, loaded persists, H0LDS(2,loaded), and -H0LDS(3, alive). 

This solution doesn't force reasoning to go forward in time. Neverthe- 
less, it is highly problematic. It depends on the situation calculus constraint, 
which requires the problem description to provide all and exactly those ac- 
tions that do occur. Consider what would happen in a world in which concur- 
rent (or uncertain) actions were allowed, and in which we were to add the rule 
causes(unload,not(loaded)) to the theory. We could then have a model where 
OCCURS(l.unload), yielding H0LDS(3,alive). There would be no way to pre- 
fer the expected model, where ->H0LDS(3, alive). This cannot in fact happen 
in Lifschitz's formulation, because in the rigid situation calculus framework 
concurrent actions are not allowed. Since OCCURS(l.wait), nothing else can 
happen and unload actions are ruled out. 

Lifschitz's solution thus works only in frameworks where all the events 
in a chronicle are known. In these cases, circumscribing the causes predicate 
gives us exactly what we want—it disables spontaneous state changes. The 
intuition underlying the Yale shooting problem, however, is that we can 
make reasonable temporal projections in worlds where concurrent actions are 
allowed, even if we are not necessarily told of all the events that take place 
in a chronicle. The fact is that even if we are given a partial description, we 
will generally not posit additional actions unless there is a good reason to do 
so. 

A second problem with this framework involves the backward reason- 
ing scenario of the previous section. If, as in this scenario, H0LDS(6,alive), 
then circumscribing causes yields causes(wait,not(loaded)). That is, the null 
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action—waiting—causes the gun to become unloaded. While the semantics 
of this statement may be unsettling, its effects are worse. Now, every time a 
loaded gun is left to wait, it will become unloaded: waiting causes unloaded- 
ness. This problem arises because causes deals with action types—shootings, 
unloadings, etc.—rather than with particular instances—e.g., the shoot in 
situation 5. 

Since this second objection was first noted, Lifschitz and Rabinov have 
constructed a theory of "miracles" [18] to deal with it. The idea here is that, 
if we must postulate additional causes—such as the magically unloaded gun 
of the previous example—we can do so by allowing that a miracle happened, 
rather than by assuming that the wait action caused the unloading. Formally, 
they circumscribe both miracles and causes, but miracles are circumscribed 
at a lower priority than causes (so that we are more willing to admit miracles 
than new causes). 

The miracle mechanism is actually an elaborate attempt to compensate 
for the inability of the situation calculus to express concurrent actions. In- 
tuitively, the unloading that must occur (so that shooting does not cause 
not(alive)) is the result of some unload action. The original version of formal 
theories made it the result of the wait action, and further waits could be ex- 
pected to have the same result. Lifschitz and Rabinov make it the result of 
a miracle, so that it is unlikely to repeat during further waits. But miracles 
are still not unloads. 

Consider, for example, the blocks-world scenario in figure 1. If we assert 
that H0LDS(4,on(b,d)), without giving an explicit sequence of actions, Lifs- 
chitz will presumably formalize this as wait occurring at 1, 2, and 3. Now, 
certainly some "miracle" must occur to put b on d—the miracle that is equiv- 
alent to move(b.d). But in order for the move to take place, clear(b) must 
hold. Thus, we actually know that a has been moved. In contrast, Lifschitz 
and Rabinov are able to assert only that by some miracle, b has come to 
be on top of d. This in itself may not be alarming, but now imagine that a 
is actually A*, the world-famous and fabulously precious diamond. Because 
it is so valuable, A* is attached to all of the finest alarms that money can 
buy. In fact, then, if we know that H0LDS(4,on(b,d)) we expect that all of 
these alarms have been tripped; Lifschitz and Rabinov can only state that 
a miracle occurred.   Indeed, moving a without effect is nothing short of a 
miracle. 

The fundamental problems with Lifschitz's solutions stem from the fact 
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that it minimizes change types, without minimizing change tokens. That is, 
circumscribing causes minimizes the changes that a particular kind of action 
can cause, but it does not address either the changes that a particular act— 
an instance of an action—can cause, or which action instances can occur. 
Lifschitz's solution might be paraphrased as few types of changes as possible. 
This solution is both important and necessary, but it is not itself sufficient. 

Abnormal-for-State Baker and Ginsberg [5] suggest a solution within 
this single action paradigm of the situation calculus as well. However, while 
Lifschitz minimizes causes, Baker and Ginsberg minimize something much 
closer to CAUSES. That is, where Lifschitz treats causation as a property of 
action types, Baker and Ginsberg supply a notion of causation with state as 
an argument. They call this predicate abv (abnormal-for-state). Unlike the 
preconditions argument to CAUSES, however, the first argument to Baker and 
Ginsberg's abv(preconditions, act, state) must be complete: 

Vpreconditions, act, state, state'. 
ab„(preconditions, act, state) (16) 

D [(state' G preconditions)] V [(not(state') € preconditions)] 

This means that ab„ depends on the value of every state in the situation 

when act occurs.7 

Perhaps more importantly, Baker and Ginsberg do not assume that 

CAUSES is a primitive notion. Instead, they derive it from situation de- 

scriptions and the actions that connect them.8 They assert 

Vt, act, state, preconditions. 
-i(ab„(preconditions, act, state) ,^-s 
AOCCURS(t,act) A HOLDS(t, preconditions)) 

D [HOLDS(t,state)=HOLDS(t + l,state)]9 

7A second difference between ab„ and CAUSES is in the third argument: while CAUSES 
indicates that state is to be true in the resulting situation, ab„ does not specify whether 
state or not(state) holds in the resulting situation; it says only that the truth value has 
changed from its value in preconditions. Since its value is given explicitly in ab.'s first 
argument, this difference is relatively insignificant. 

8The fact that Baker and Ginsberg derive their "causes" predicate leads Ginsberg 
to argue that ab, is not causation [personal communication]. Indeed, Ginsberg (and 
presumably Baker) would object to their theory's inclusion in this section. While this 
point may ultimately prove to be of philosophical import, we will continue to treat ab„ as 
a causal predicate on the looks, walks, quacks like a duck principle. 
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This is essentially a reformulation of inertia (10) in the context of the 
situation calculus axiom (15) and completeness condition (16). For exam- 
ple, from the causal rule in the Yale shooting problem (13), the situation 
calculus axiom (15), and Baker and Ginsberg's axiom (17), we can derive 
ab„({alive, loaded}, shoot, not(alive)).10 

Baker and Ginsberg's solution, then, is to minimize ab„, their version of 
CAUSES. The result, as for Lifschitz's causes, is a theory that prefers those 
sequences of situations in which actions cause only the expected changes. 
Their theory does not treat concurrent actions, and so suffers from the same 
possible concurrent unload problem as Lifschitz's. It does behave differently 
with respect to wait's causing unloading: now wait only causes unloading in 
a particular state. 

Causal Minimizations Haugh avoids these pitfalls by allowing OCCURS 
to be multivalued. That is, more than one action may occur between two 
situations, and not all of those actions are necessarily known. This reopens 
the first Yale shooting problem, deducing that nothing else happens to unload 
the gun. Haugh solves both the "nothing else happens" problem and the "no 
bizarre side effects" problem by minimizing potential-cause, the conjunction 
of OCCURS and causes.11 This means that anything that must occur has as 
few effects as possible, and anything with known effects occurs only if it must. 
Since unload is known to cause not(loaded), if it were to occur, it would be 
a potential-cause. We can't minimize causes(unload,not(loaded))—it is in our 
axiomatization. So instead we minimize OCCURS(....unload), and the unload 
never happens. 

9We have taken the liberty of reformulating Baker and Ginsberg's axiom in our no- 
tation; the original notation makes use of the situation calculus function result and their 
function describes. In the context of the situation calculus rule (15) and the completeness 
condition (16) our reformulation is equivalent to their (4) and (11) [5, pp. 908 and 909]. 

"Actually, we derive ab„({alive, loaded, X}, shoot, not(alive)), where X represents the rest 
of the states in any situation: blueSky, not(blueSky), on(b,c), etc. This is because Baker 
and Ginsberg insist that the first argument to ab, be complete. 

"This causes is Lifschitz's causes(act, state), again. Haugh, too, uses a precond predicate 
for the other half of CAUSES. He actually presents two solutions: potential causes, de- 
scribed here, and determined causes. Haugh's theory of determined causes adds a chrono- 
logical aspect, crossing his theory of potential causation with the chronological solutions 
of the previous section. The resulting theory suffers from anomalies results similar to but 
more severe than those described here for potential causes. 
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This idea seems to merge our comments regarding the utility of mini- 

mizing actions—from the previous section—with Lifschitz's suggestions re- 
garding unexpected effects. Indeed, it is quite effective in many situations, 
and many of these intuitions are reflected in motivated action theory, below. 
Haugh's theory is unable to handle causal chains and spontaneous actions, 
which we describe in section 5.3, below. Here, we mention some strange 
results which Haugh obtains when reasoning about disjunctions. 

Suppose, for example, that we know that while we were out of the room, 
either nothing happens (wait) or someone unloads the gun. Haugh's theory of 
potential causes predicts that the wait occurs, and the gun remains loaded. 
Unlike unload, wait has no effects, so there are no causes axioms on wait. This 
means that even if wait occurs, it won't be a potential-cause. Unload, as we 
have seen above, is a potential-cause whenever it OCCURS. 

These difficulties in Haugh's theory arise from a confusion between action 
and state change. There are many actions without obvious state changes— 
McDermott, e.g., suggests "run around the track three times" [23, p. 109]. 
Since Haugh is concerned with the conjunction of causes and OCCURS, he 
is really only interested in minimizing the occurrence of actions with effects. 
In his framework, "run around the track three times" can occur arbitrarily 
often, just as unload can occur arbitrarily often in Lifschitz's framework. 
Since "run around the track three times" has no effects, it is never a potential- 
cause. Minimizing potential causes can never eliminate a "run around the 
track three times" event. 

Haugh's theory suffers from a second, though perhaps less disconcerting, 
anomaly. Since the theory only minimizes causes for actions that actually 
OCCUR, actions that never occur can have arbitrary effects. For example, 
patting my stomach and rubbing my head could cause the world to blow up, 
provided I never actually do pat my stomach and rub my head. Of course, if 
I ever did succeed in patting my stomach and rubbing my head, this bizarre 
effect would go away, but it is somewhat strange to allow a conclusion like 
causes(pat-and-rub,blow-up( world)). 

5    Motivated Action Theory 

The theories of temporal reasoning that we have discussed so far have each 
had a flawed notion of what causation means as a preference over sequences 



L. A. Stein and L. Morgenstern Motivated Action Theory 20 

of situations. Chronological approaches minimize changes to the world in 
temporal order, allowing states to persist for as long as possible. We have 
seen that this approach fails when causal rules are used to reason backwards 
in time. In contrast, causal approaches minimize the kinds of change that 
may occur. When coupled with the situation calculus, which insists that 
exactly one action occur in every situation, these solutions enjoy moderate 
success. However, care must be taken when combining causal solutions with 
a richer temporal ontology. 

In this section, we describe motivated action theory, a theory of causal 
reasoning which combines features from both of these approaches. From 
the chronological approaches, and from Haugh's causal minimization, we 
adapt the idea of minimizing actions; from the causal approaches, we borrow 
the idea of minimizing causes. The resulting theory solves both projection 
and backwards reasoning problems in the context of concurrent actions, and 
additionally lends itself to a theory of explanation. Our model formalizes 
the intuition that we typically reason that events in a chronicle happen only 
when they "have to happen". We formalize the idea of a motivated action, 
an action that must occur in a particular world model. 

5.1    The Form of the Rules 

For the most part, motivated action theory makes use of a language like 
that of section 2.1. However, the form of causal rules play a critical part in 
motivated action theory. We discuss them briefly here. 

In motivated action theory, a causal rule is a sentence of the form 

aAßDf 

where: 

a is a non-empty set of occurrence terms OCCURS(t.act)—the set of trig- 
gering events of the causal rule, 

ß is a conjunction of terms (including no positive occurrence terms) giving 
the preconditions of the action, and 

7 describes the results of the action. 
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Note that 7 can include occurrence terms. We can thus express causal chains 

of actions. 
This notation is not exclusive of the CAUSES notation we have described 

above. In fact, causal rules can be derived from CAUSES statements. For 
each CAUSES statement (1), add the axiom 

Vt.HOLDS(t, precondition) A OCCURS(t,act) ,    , 
DHOLDS(t + l, state)] U ' 

In addition, since motivated action theory allows causal chains, whenever 
there is a statement of the form 

CAUSES(preconditions, act, act') (19) 

we add the axiom 

Vt.HOLDS(t, precondition) A OCCURS(t, act) .    , 
D OCCU RS(t + l, act')] K    ] 

Conversely, we can use Baker and Ginsberg's method of deriving CAUSES 
from our causal rules and inertia (10), provided that we use the methods 
outlined below to rule out actions that don't occur. Baker and Ginsberg 
don't encounter this difficulty because they rely on the situation calculus to 
eliminate all but a single action. 

We should also include a brief word on persistence rules. Motivated action 
theory simply takes the axiom of inertia (10) as stated above. We solve 
the problem of proving non-occurrence of actions through motivation and 
preferred models; we solve the problem of unknown state by allowing state 
to vary freely—in one model, state may hold, while in another, not(state) 

does. 
This leaves only the difficulty of ruling out unknown CAUSES. Here, we 

turn to the causal approaches to temporal reasoning. Before using motivation 
to determine preferred models, we circumscribe CAUSES much as Lifschitz 
and Baker and Ginsberg, do. Now, inertia allows us to derive mono tonic 
persistence rules. For example, a formulation of the Yale shooting problem 

might include the rule 

Vt.HOLDS(t, alive) 
A -. (OCCURS(t,shoot) A HOLDS(t,loaded)) (21) 

DHOLDS(t + l, alive) 
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It is important to note that all of the rules in any theory T are monotonic. 
We achieve non-monotonicity solely by introducing a preference criterion 
on models:12 in particular, preferring models in which the fewest possible 
extraneous actions occur. Typically, we will not be given enough information 
in a particular chronicle description to determine whether or not the rules 
in the theory fire. However, because persistence rules explicitly refer to 
the non-occurrence of events, and because we prefer models in which events 
don't occur unless they have to, we will in general prefer models in which the 
persistence rules do fire. The facts triggered by persistence rules may allow 
causal rules to fire as well. 

5.2    Model Theory 

Given a particular theory instantiation, we would like to be able to reason 
about the facts which ought to follow from the chronicle description under 
the theory. In particular, we would like to be able to determine whether a 
statement of the form HOLDS(t.p) or OCCURS(t,a) follows from the chronicle. 
In formal terms, given TI = T U CD, we are interested in determining the 
preferred models for TI. M{TI) denotes a model for TI: i.e., M(TI) (= TI. 
We define a preference criterion for models in terms of motivated actions: 
those actions which "have to happen."13 Our strategy will be to minimize 
those actions which are not motivated. (We actually define motivation over 
all statement types, but in the end it will only be the motivation of occurrence 
terms about which we care.) 

To begin with, it is clear that actions that follow directly from the theory 

12In section 5.4, we give a proof theoretic version of motivated action theory, but the 
axioms remain monotonic. There, we introduce a sort of "syntactic circumscription" or 
preference over sets of sentences, making the monotonic theory non-monotonic through 
the introduction of a new rule of inference. 

"Amsterdam [4] has objected to our use of the phrase "has to be in that model." He 
points out that a statement that holds in a model trivially must be in that model, and 
objects that our language is therefore meaningless. We can easily brush aside his objection 
by protesting that we really mean "partial truth assignment," or "set of models," rather 
than models. But it seems to us that our use of the phrase was not careless; instead our 
language captures the intuition that motivated actions are somehow a more necessary part 
of the model, forced by the presence of their causes, than chance facts such as the color 
of a shirt someone happens to be wearing. 
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instantiation TI will "have to be" in M(TI), for any model M(TI). For 
example, in the original Yale shooting problem—(11) together with (13)— 
0CCURS(2,shoot) is in CD, so it will certainly be in M{TI) = M(TU CD). 
This is motivation in its strongest sense. 

Definition: Given a theory instantiation TI =  T U CD, we say that a 
statement y> is strongly motivated with respect to TI if it is in all   strong 
models of TI, i.e. if TI \= <p. motivation 

If V? is strongly motivated with respect to TI, we say that it is motivated 
in M( TI), for all models M{ TI). 

Strong motivation includes actions that are deductive consequences of 
other actions (or states) as well as those actions explicitly mentioned. For 
example, if opening a safe inevitably causes air to rush in, air rushing in is 
strongly motivated even if it is unmentioned in a CD containing the safe's 
opening. 

A weaker form of motivation occurs when an action may or may not 
happen. For example, a batch of freshly baked cookies in the kitchen 
may well be devoured by roaming cookie thieves. Our CD might contain 
TRUE(l,in(cookies,kitchen))—but no information as to the presence or ab- 
sence of cookie thieves—and our T might include rules such as 

Vt.TRU E(t, in(cookies, kitchen)) 
ATRUE(t,in(cookie-thief, kitchen)) 

D OCCURS(t + 1, cookie-theft) 
(22) 

In this case, some models of TI will entail TRUE(l,in(cookie-thief, kitchen)) 
and therefore 0CCURS(2, cookie-theft), while others will entail neither. 
0CCURS(2, cookie-theft) is not entailed by all models of TI, and so it is 
not strongly motivated (in TI). It is, however, weakly motivated in M( TI) 
whenever M{TI) (= TRUE(l,in(cookie-thief,kitchen)). If there's a cookie 
thief around, the theft "has to happen." 

Definition: A statement <p is weakly motivated in M{TI) if there exists in   weak 
TI a causal rule of the form aAßDf, where ß contains no (positive)   motivation 
occurrence terms; a is motivated in M(TI); and M(TI) \= ß. 
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The a clause is added to ensure that causal consequences of motivated 
actions—like the falling of successive dominos—are motivated. Note that 
a may be strongly or weakly or semi- or existentially motivated. (See the 

definition of motivation, below.) 
The definition of weakly motivated depends on the form of the causal rule 

a A ß Dtp. Logically, this is equivalent to -ia V ->ß V (p, or a A -><p D ->/?, or 
any number of other variations. For example, the causal rule for shoot (13) 

might be rewritten as 

Vt.OCCURS(t,shoot) A HOLDS(t + 1,alive) D HOLDS(t,not(loaded))(23) 

This rule says that if someone is shot, but remains alive, the gun must not 
have been loaded. Indeed, this statement is reasonable, and our causal rule 
(13) would allow such an inference (see section 5.3, below, for details). But 
we do not want to say that shooting someone who remains alive causes the 
gun to have been unloaded, so we do not include axiom (23) in our causal 
rules, and we do not allow it to participate in motivating other actions. We 
discuss this point further in [33], esp. chapter 5. 

Intuitively, <p is motivated in a model if it has to be in that model. Strong 
motivation gives us the facts we have in CD to begin with as well as their 
closure under T. Weak motivation gives us the facts that have to be in a 
particular model relative to T. Weakly motivated facts give us the non- 
monotonic part of our model—the conclusions that may later have to be 

retracted. 
In addition to these two types of motivation, we need to define special 

mechanisms to handle complex expressions. Conjunctions in TI can sim- 
ply be broken into independent assertions, as the entire TI is implicitly 
conjoined. Universal quantification can similarly be treated as infinite con- 
junction. However, additional machinery is required to handle disjunction 

and existential quantification.14 

Disjunction is treated similarly to weak motivation. Consider a baby with 
a plate of food in front of him. Babies being babies, he will either toss his 
food on the floor or make a tremendous mess of his face. In this case, some 
models will entail the food's being thrown, while others will entail a messy 
face. (Indeed, some will entail both consequences as well.) Because we have 

14We are indebted to Matt Ginsberg for pointing out the difficulties that arise with 
disjunctions in CD. 
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adequate explanation for any of these consequences, we say that the food- 
throwing (similarly the face-messing) is motivated in any model in which it 
is entailed. In general, when CD contains a disjunction or when a causal 
rule implies a disjunction, each disjunct is motivated in the model(s) that 

entail(s) it. 

Definition: A statement <p is semi-motivated in M(TI) if it is contained   «emi- 
in a disjunction p = fa V <p V ^2" P € CD or there is a causal rule   motivation 
aAßDpE  T with a motivated in M{ TI) and M( TI) |= ß, and 

M(TI)\=<p. 

Finally, the language of motivation needs be amended once more to handle 

existential quantification. 

Definition: A statement f is ezistentially motivated in M(TI) if p  =   existential 
3x.y>(x), p € CD or there is a causal rule aAßDp G T with a mo-   motivation 
tivated in M(TI) and M{TI) \= ß, and <p is a skolemized existential 
specification of/), i.e. (f is what you obtain by substituting some unused 
skolem constant slq for each occurrence of x in ip. 

An action is motivated—explained—whenever any of these conditions 
holds. To understand a theory instantiation, we simply minimize actions 
that are not explained according to these definitions. 

Definition: Given a theory instantiation TI = TöCD, we say that a state- 
ment ip is motivated in M (TI) if it is strongly motivated in M( TI) or 
weakly motivated in M( TI) or semi-motivated in M( TI) or existen- 

tially motivated in M{ TI). 

We now say that a model is preferred if it has as few unmotivated actions 
as possible. A statement is unmotivated in M( TI) if it is not motivated in 
M( TI). Formally, we define the preference relation on models as follows:16 

n»fWi»Ti- T.M ,mmnt(M(TT)) = 
"Either Vi or V"2—or both—can be empty. If both Vi and i>2 are empty, semi- 

motivation reduces to strong motivation (if p € CD) or to weak motivation (if a A ß D p € 
T). 

16We had intended the previous version of preference, in [28, 34], to be equivalent to the 
current definition. Jonathan Amsterdam and Ramiro Guerreiro independently pointed out 
to us the error of our ways. The definition given here captures the intuitions intended by 
the previous version, is equivalent to it on all examples in the original paper, and corrects 
the non-transitivity of the original. 

motivated 

unmot 
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f^viiDc/        \      M(r/)|=OCCURS(t,act)and \ 
|OCCURS(t,act)      0CCURS(t5act) ig unmotivated in M(TI)} j 

unmot(M{ TI)) is the set of unmotivated actions in M( TI). 

Then     Mi(TI) 1 Mj(TI)     (Mt     is     preferable     to     Mj)     if    < 
unmot(Mi(TI)) C tinmo^A^^r/)). 

That is, A4;( TJ) is preferable to Mj{ TI) if "fewer" (subsetwise) unmoti- 
vated actions occur in Mi(TI). Note that such actions cannot be strongly 
motivated in Mj( TI)] if an action is strongly motivated in one model, it is 
strongly motivated in all models. 

Definition: If both Mi{TI) ± Mj(TI) and Mj(TI) < Mi(TI), we say 
that Mi( TI) and Mj( TI) are equipreferable (Mi( TI) « Mj{ TI)). 

■<   induces a partial order on acceptable models of TI. A model is pre- 
ferred if it is a minimal element under  ■< : f     d 

Definition: M(TI)   is   a  preferred  model  for   TI   if,   for   any   model   model 
M'{ TI) < M( TI), M'( TI) « M( TI). 

Since not all models are comparable under   < , there may be many pre- 
ferred models. Let M*( TI) be the set of all preferred models. 

We define the following sets: p,   t 

n^ = {tp I ¥M € M*{TI),M \= tp}—the set of statements true in all 
preferred models of TI y 

UM. = {tp | 3M 6 M*(TI),M \= tp}—the set of statements true in at 
least one preferred model of TI 

Consider, now, the relationship between any statement tp and TI. There 
are three cases: 

Case I: tp is in ^M*(Tiy ^ tllis case' we say that TI ProJccfa V- projects 

Case II: <p is in U^*(TJ). In this case, we say that ip is consistent vrith TI. 

However, if tp £ ^M*{Tiy TI does not ProJect f- 
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Case HI: <p not in U^.(T/). In this case, we say that <p is inconsistent with 

TI. In fact, it is the case that TI projects -up. 

If TI projects <p, and TIME^) is later than the latest time point men- 
tioned in TI, we say that TI predicts <p. predicts 

5.3    Reasoning with MAT 

Prediction: The Yale Shooting Problem, Revisited We now show 
that our theory can handle the Yale shooting problem. We represent the 
scenario with the following theory instantiation: 

CD: 

H0LDS(1, alive) 
OCCURS(l,load) (24) 
0CCURS(3, shoot) 

We have varied the statement slightly from (11), replacing HOLDS(l.loaded) 
with OCCURS(l,load) and delaying the shoot to 3. These changes do not 
affect the outcome, but allow us to better illustrate the effects of motivated 

action theory. 
T contains causal rules for shoot, load, and unload, as well as the persis- 

tences for loaded and alive. The first causal rule is generated by statement 
(12); we have introduced the others because they will be useful below, but 
they do not effect the outcome of the original problem. 

T:    Causal Rules: 

Vt.OCCURS(t,shoot) A HOLDS(t, loaded) D HOLDS(t + l,not(alive)) 
Vt.OCCURS(t, load) D HOLDS(t + 1, loaded) ^ 
Vt.OCCURS(t,shoot) D HOLDS(t + 1, not(loaded)) 
Vt.OCCURS(t,unload)DHOLDS(t + l,not(loaded)) 

Persistence Rules: 
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Vt.HOLDS(t, alive) 
A-i(OCCURS(t,shoot) V HOLDS(t, loaded)) 

DHOLDS(t + l, alive) 
Vt.HOLDS(t, not(alive)) D HOLDS(t + 1, not(alive)) 
Vt.HOLDS(t, loaded) 

A-(OCCURS(t, shoot)) (26) 
A-(OCCURS(t, unload)) 

DHOLDS(t + l, loaded) 
Vt.HOLDS(t,not(loaded)) 

A-OCCURS(t,load) 
DHOLDS(t + l,not(loaded)) 

Consider the models of TI = (24) U (25) U (26). Let Mx be the ex- 
pected model, including H0LDS(3,loaded) and HOLDS(4,not(alive)); and let 
M2 be the unexpected model, where H0LDS(3,not(loaded)), and therefore 
H0LDS(4,alive). Both Mi and M2 are models for TI. However, we will see 
that Mi is preferable to M2, since extra, unmotivated actions take place in 

M2. 
We note that the facts HOLDS(l.alive), OCCURS(l.load), and 0C- 

CURS(3,shoot) are strongly motivated, since they are in CD. The fact 
H0LDS(2,loaded) is also strongly motivated; it is not in CD, but it must 
be true in all models of TI. In Mi, the model in which the gun is still loaded 
at 3, H0LDS(4,not(alive)) is weakly motivated. It is triggered by the shoot 
action, which is motivated, and the fact that the gun is loaded, which is true 
in Mx. The only actions in Mu OCCURS(l.load) and 0CCURS(3,shoot), are 

strongly motivated. 
In contrast, M2 must entail another action. Since M2 (= 

H0LDS(2, loaded) and also H0LDS(3,not(loaded)), something must defeat the 
persistence of loading. Therefore, M2 (= 0CCURS(2, unload). However, the 
occurrence of this unload action is not motivated: it is not triggered by any- 

thing. 
According to this definition, then, Mi is preferable to M2. There is no 

action which occurs in Mx that does not occur in M2. However, M2 is not 
preferable to Mx: there is an action, unload, which occurs in M2, but not in 

Mi, and this action is unmotivated. 
There is actually a third model, M3(TI), which entails 0C- 

CURS(2,shoot).   Together with H0LDS(2,loaded) (a strict consequence of 
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77), this entails H0LDS(3,not(alive)). Since not(alive) persists, this gives us 
H0LDS(4,not(alive)). This model, however, contains an unmotivated action: 

0CCURS(2,shoot). 
In fact, it can be seen that in any preferred model of TI, H0LDS(3,loaded), 

and therefore H0LDS(4,not(alive)). That is because in any model where 
H0LDS(3,not(loaded)), a shoot or unload action must happen at time 2, and 
such an action would be unmotivated. Since the facts H0LDS(3,loaded) and 
H0LDS(4,not(alive)) are in all preferred models of TI, TI projects these facts. 

Causing Actions Nonetheless, preferring models in which the fewest pos- 
sible unmotivated actions occur is not equivalent to preferring models in 
which the fewest possible actions occur. We can see this in cases where an 
action occurs on the right-hand side of a causal rule: in causal chains and in 

spontaneous actions. 
Consider, e.g., the dominos example from section 2. T might include the 

causal rule 

Vt,0<i<n. 
OCCURS(t,fall(dominoi)) (27) 

A-nOCCURS(t,blockFall(dominoi)) v    ' 
D OCCURS(t + l,fall(dominoi+i)) 

Assume that the chronicle description contains OCCURS(l,fall(dominoi)). 
Then, using our preference criterion, the theory instantiation projects 

VO < i < n.OCCURS(n,fall(dominon)) (28) 

Minimizing actions would yield n minimal models, one agreeing with moti- 
vated action theory and n - 1 additional models corresponding to the block- 

ings of the n — 1 successive falls: For 1 < k < n, 

VI < i < k.OCCURS(i,fall(domino;)) /^ 
OCCURS(k,blockFall(dominok+1)) 

V    ' 

and no other terms of the form OCCURS(t.act). The non-equivalence of the 
two criteria will hold in any theory with causal chains of events. Thus our 
criterion is not equivalent to circumscribing over the OCCURS predicate. 

A second non-equivalence of MAT  and circumscribing action arises 
in   the  context   of spontaneous   actions.      Consider,   for  example,   the 
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cookie thief of formula (22). Given CD containing HOLDS(l,in(cookies, 
kitchen)), MAT will yield two preferred models: Mlf in which 
HOLDS(l,in(cookie-thief,kitchen)) and so OCCURS(2,cookie-theft); and M2, 
in which ->HOLDS(l,in(cookie-thief, kitchen)) and so (assuming that T con- 
tains no other causal rules for cookie theft) -nOCCURS(2, cookie-theft). MAT 
thus allows both possibilities, depending on the presence of the cookie 
thief. In contrast, minimizing actions prefers M2—no cookies stolen— 
unequivocally. In the authors' experience, this may be overly optimistic. 

MAT here attempts to capture our intuition that some agents act au- 
tonomously and that their volitional actions can be motivated by their inter- 
nal states. Such agents are represented by causal rules with no a-part—no 
positive occurrence terms. Similarly, occurrences such as sunrise can be rep- 

resented by causal rules such as 

Vt.HOLDS(t, daybreak) DOCCURS(t + l, sunrise) (30) 

The elimination of such rules from T implies the absence of autonomously 
motivated agents and spontaneous—but caused—occurrences. 

Backwards Projection We now show that our theory handles backward 
projection properly. As an example, consider the theory instantiation TI 
consisting of the background theory (25) and (26), and the chronicle (14), in 
which HOLDS(6,alive). Since we know that a shoot occurred at 5, we know 
that the gun cannot have been loaded at 5. However, we also know that 
the gun was loaded at 2. Therefore, the gun must have become unloaded 
between 2 and 5.17 Motivated action theory tells us nothing more than this. 
Consider the following acceptable models for TI': 

• M[, where unload occurs at 2, the gun is unloaded at 3, 4, and 5 

• M'2, where unload occurs at 3, the gun is loaded at 3 and unloaded at 

4 and 5 

• M'3, where unload occurs at 4, the gun is loaded at 3 and 4, and un- 

loaded at 5. 
17As we know, either an unload or a shoot will cause a gun to be unloaded. However, 

because we know that shooting will cause not(alive), that not(alive) persists forever, and 
that HOLDS(6,alive), all models for TI' must have an unload. 
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Intuitively, there does not seem to be a reason to prefer one of these 
models to the other. And in fact, our theory does not: M[, M'2, and M'3 

are incomparable. Note, however, that both M\ and M'3 are preferable to 
M'4, the model in which unload occurs at 2, load at 3, and unload at 4. M'4 

entails TI, but has superfluous actions. In fact, it can be shown that M[, 
M'2, and M3 are preferred models for TI'. All that TI' can predict, then, is 
the disjunction: 

0CCURS(2,unload) V 0CCURS(3,unload) V 0CCURS(4,unload)    (31) 

which is exactly what we want. 

5.4    Proof Theory 

The proof theory for motivated actions is based on the construction of sets of 
sentences analogous to models. We then transform the preference criterion 
denned on models in the previous section to one defined on these sets of sen- 
tences; the theorems of motivated action theory are exactly those sentences 
contained in the most-preferred set. 

Definition: An occurrence kernel is a pair {A,B), where A is a set of oc-   {A,B) 
currence terms and B is a set of state terms. We define A complement 
as 

-T A I = {-OCCURS(t,act) | OCCURS(t,act) 0 A} 

and write {A, B) TJ for TI U A U B UZ (A, B) 

We say that an occurrence kernel {A,B) {^acceptable for a theory 
instantiation TI if {A, B)TI= T/UAUBUAis consistent (whenever 
TI is). We say that {A, B) supports a statement <p if (A, B)TI b <p. 

An occurrence kernel thus determines the complete set of actions that do 
(A) and don't (A~) occur. If If B provides a value for every state at every 
time, then the "world" of {A, B) is completely determined—actions by A and 
~Ä, and state by B. However, we do not in general need a complete B. It is 
sufficient for the truth of HOLDS(t.state) to be derivable from {A,B). For 
example, the occurrence kernel 

A   =   {0CCURS(l,load),0CCURS(3,shoot)} 

B   =   {HOLDS(T0, alive), HOLDS(T0,not(loaded)} 

TI 
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completely determines all state for TI = (24) U (25) U (26). So, also, does 

A   =   {OCCURS(l,load),OCCURS(2,unload),OCCURS(3,shoot)} 

B   =   {HOLDS(T0, alive), HOLDS(T0, loaded)} 

Here, we introduce the notion of TQ, the least time point.    We assume   least       time 
that To is a time point that precedes any time point mentioned in  CD   point 
by some arbitrarily large (but finite) quantity.   Further, we assume that 
Vact.^OCCURS(T0,act).    Thus, bom_HOLDS(T0, loaded) and Vt,T0   < 
t < 1.^0CCURS(t,load) (which is in A for this (A,B)), {A,B)TJ gives us 
Vt,T0 < t < l.HOLDS(t,loaded); similarly alive. 

Formally, if TI is a theory instantiation and (4, B) is an occurrence kernel 
acceptable for 77, then we say that (A, B) is total for TI if for every ground   total 
term <p = HOLDS(t,state) or OCCURS(t,act), 

(A,B)„\-<p       or       {A,B)TI\--,<p 

Total occurrence kernels determine the results of all actions; in this sense, 
they correspond to sets of models, or limited world views. We will assume 
all occurrence kernels below to be total. We take OC( TI) to be the set of   OC( TI) 
occurrence kernels (A, B) that are both acceptable and total for TI. 

We now define the syntactic equivalent of motivation, the second order 
predicate MOT({A,B), TI,<p), recursively in terms of the first-order conse-    MOT 
quences of (A,B)TI. 

Definition: MOT((A,B), TI,<p) if 

1. TI\-<p, or 

2. there exists in TI a causal rule of the form a A ßD<p; 
MOT({A,B), TI,a); and {A,B)TI h ß, or 

3. /> = V>iVy>vV>2;?e CDoiaAßDpe T vnthMOT((A,B),TI,a) 
and (A,B)TI \~ ß; and (A,B)TI\- <p, or 

4. p = 3x.^(x); p € CD or a A ßDp € T with MOT((A,B), TI,a) 
and (A,B)TI h ß; and <p is a skolemized existential specification 
of p, i.e. ip is what you obtain by substituting some unused skolem 
constant skj for each occurrence of x in r(>. 

We next define the unmotivated actions in (A,B): 



I. A. Stein and L. Morgenstern Motivated Action Theory 33 

Definition: Let (A, B) be an acceptable and total occurrence kernel for TI. 

Then unmot((A,5)) = 

OCCURS(t,act) 
(A,5)T7r-0CCURS(t,act)and      1 

1M0T((A,5),T/,0CCURS(t,act)) J 

MOT induces a partial order on occurrence kernels. If (A, B) and {A1, B') 
are occurrence kernels in OC{ TI), we say that (A, B) is preferred to (A\ B') 
({A,B) ■< (A',B')) if unmot((A,£)) C unmot((A\B'». As with models, we 
call minimal elements under this ordering preferred, and call the set of these 

preferred occurrence kernels OC*(TI). We define U0C*(TI) 
and nOC*(T7) to U

CX*(TJ) 

be the union and intersection of statements in preferred occurrence kernels, ^OC(TI) 

respectively. 

Soundness and Completeness Below, we show that this definition of 
motivation is both sound and complete with respect to the semantic notion of 
motivation. First, we define a particular mapping from models to occurrence 

kernels. 

Definition: OCM,TI> the occurrence kernel of model M for theory instan- 
tiation TI, is the occurrence kernel (A, B) given by 

A   =   {OCCURS(t,act) | M h OCCURS(t,act)} 

B   =   {HOLDS(T0,state) | M \= HOLDS(T0,state)} 
U   {HOLDS(T0,not(state)) | M |= HOLDS(T0,not(state))} 

That is, the occurrence kernel for a model agrees with that model on all 
actions—since every action is either in A or A—and on enough state to make 

the occurrence kernel total for TI. 
Formally, we have 

Lemma 1.1 Let TI be a theory instantiation; let M be a 
model for TI; and let OCM,TI = (A,B) be the occurrence kernel 
of M for TI. Then OCM,Ti " acceptable and total for TI. 

Proof: Proofs of all lemmas and theorems may be found in the 

appendix. 
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Since the occurrence kernel agrees with the model on all of the appropriate 
atomic formulae, motivation in a model is equivalent to motivation in the 

occurrence kernel: 

Theorem  1 Let TI be a theory instantiation; let M be a 
model for TI; and let OCM,TI = {A,B) be the occurrence kernel 
ofM for TI. Then MOT((i4, B), TI,<p) iff<p is motivated in M. 

In the other direction, we do not need to define a particular model for 
an occurrence kernel; any model which entails (A,B)TI is sufficient. This 
mapping from occurrence kernels to models is also motivation-preserving. 

Theorem 2 Let TI be a theory instantiation; let {A,B) be 
an occurrence kernel for TI; and let M be a model of (A,B)TI. 
Then <p is motivated in M iffMOT{{A,B), TI,<p). 

Given these correspondences, it is easy to see that the model-theoretic 
and proof-theoretic versions of motivation support the same conclusions: 

Theorem 3 (Soundness and Completeness) 
Let TI be a theory instantiation, with M*( TI) the set of preferred 
models for TI, and OC*(TI) the set of preferred occurrence ker- 

nels for TI. Then ip € Uoc-(T/) iff <p £ ^M'(TI)' V e nOC*(Tl) 
iff <P € nM*{TI). 

5.5    Towards a Theory of Explanation 

A theory of temporal reasoning that can handle hoth forward and backward 
projection properly is clearly a prerequisite for any theory of explanation. 
Now that we have developed such a theory, we present a theory of explana- 

tion. 
Intuitively, the need to explain something arises when we are initially 

given some partial chronicle description accompanied by some theory, we 
make some projections, and then we subsequently discover these projections 
to be false. When we find out the true story, we feel a need to explain "what 
went wrong"—that is, why the original projections did not in fact hold true. 

Formally, we can describe the situation as follows: Consider a theory 
instantiation TIX = Tö CDX, with n^no equal to the set of facts projected 
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by TIi. Consider now a second theory instantiation TI2 = T U CD2, where 
CD2 D CDr. That is, TI2 is TIi with a more fleshed out description of the 
chronicle. We say that there is a a need for explanation of TI2 relative to 
TIi if there exists some fact K G CD2 such that TIX does not project K, i.e. 
if (3K € CD2)[K 0 n^.jTi,)]- For any such K, we say that K must be explained 

relative to TIi and TI2. 
The need for explanation may be more or less pressing depending upon 

the particular situation. There are two cases to be distinguished: 

Case I : 

K is not projected by TIi, i.e. K # f"W(Ti). However K is consistent with 
TIi, i-e- K ^ Uju-cnj)- That is, «is true in some of the preferred models of 
TIi, ^ Just 1S not true m ^ °f tne preferred models. For example, consider 
TIi = TU CDi, where T is the theory described by (25) and (26), and 
CDX = {H0LDS(1, loaded), H0LDS(2, -loaded)}, and TI2 = TüCD2, where 
CD2 = CDi U {0CCURS(1, unload)}. 

The set of preferred models for TIi contains models in which the gun 
becomes unloaded via an unload action, and models in which the gun be- 
comes unloaded via a shoot action. Neither action is in the intersection 
of the preferred models, so neither action is projected by TI\. TI\ will 
only project that one of the actions must have occurred; i.e. the disjunct 
0CCURS(1,shoot) V 0CCURS(1,unload). 

The extra information in CD2 does not contradict anything we know; it 
simply gives us a way of pruning the set of preferred models. Intuitively, 
an explanation in such a case should thus characterize the models that are 

pruned. 

Case II : 

K is not projected by TJV  In fact, K is not even consistent with TIi, i.e. 

K 0 Uj\4*(Tl Y ^ **"s case' ^ 1S m *act *^e case t*iat ~"c e n***(Tii)> *-e-> ^i 
projects ->«. 

Such a situation is in fact what we have in the Yale shooting problem, 
if we find out, after predicting not(alive), that H0LDS(6, alive). This is the 
sort of situation that demonstrates the nonmonotonicity of our logic, for TIi 
projects H0LDS(6,-alive), while TI2 D TIi projects H0LDS(6,alive). Here 
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the need for explanation is crucial; we must be able to explain why our early 
projection went awry. 

Intuitively, an informal explanation of what went wrong in this case must 
contain the facts that an unload occurred and that the gun was thus unloaded 
at time 5. That is, an adequate explanation is an account of the facts leading 
up to the discrepancy in the chronicle description. 

We formalize these intuitions as follows: Given TIX, TI2, and a set of 
facts Q which are unprojected by I7i, we define an adequate explanation for 
the set of facts Q relative to TIX and TI3 as the set difference between the 
projections of TI2 and the projections of TI\: 

Definition: Let Q = {/c | *e € CD2 A/tf nM*(Ti)} 

An adequate explanation for Q is given by ^M"(TI3) ~ ^M'(Th) 

As an example, let Th = T u CDi be the description of the Yale 
shooting scenario with CD (14); let TI2 = T U CD2, where CD2 = 
CD-i. U {H0LDS(6,alive)}. The explanation of H0LDS(6,alive) relative to 
Th and TI2 would include the facts that an unload occurred either at time 
2 or time 3 or time 4, and that the gun was unloaded at time 5—precisely 
the account which we demand of an explanation. 

Note that, due to our preference criterion, explanations in this theory are 
minimal in the number of unmotivated actions that they posit. The theory 
thus lends itself to the goal of finding the simplest possible explanation for 
an unexpected outcome. 

6    Discussion 

The language that we used to describe temporal scenarios was adequate to 
the points that we wished to make here. However, most artificial intelligence 
applications will require a more realistic temporal ontology. Once we adopt 
such an ontology—for example, McDermott's full temporal logic [23])—the 
notion of causation that underlies motivated action theory will have to be 
revised. Although our central claim that causation is the underlying disam- 
biguating principle of temporal reasoning still holds, a more sophisticated 
formalization of causation will ultimately be needed. 
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Morgenstern [27] has extended motivated action theory to provide the 
basis for an epistemic logic of action, called EM AT (Epistemic Motivated 
Action Theory). Most logics of action are not suitable for reasoning about 
other agent's knowledge and actions, either because they rely on complete 
enumeration of the actions taking place (completeness), or because they in- 
sist that some action—such as wait—must take place at every time point 
(density). Because motivated action theory is neither dense nor complete, it 
is possible to reason about periods during which some unknown actions may 
take place. This is critical to such reasoning processes as planning and plan 
recognition. EMAT explores these issues. 

Amsterdam [4] suggests several improvements to motivated action theory. 
His disambiguating preference betters the notion of motivation in certain con- 
texts, notably when performing backwards reasoning. Although motivated 
action theory correctly suggests that "something must have happened" in 
these scenarios, Amsterdam's supported actions allow more sophisticated rea- 
soning about the nature of the intervening action. However, Amsterdam's 
supported action theory neither includes nor easily expands to cover phe- 
nomena such as causal chains. 

When several legitimate possibilities exist, motivated action theory can 
only suggest a disjunction of these possibilities. For example, if a gun might 
have been unloaded at any time between its initial loading and its subse- 
quent firing, motivated action theory remains uncommitted as to when the 
unloading occurs. Further, if the gun might have been unloaded either by 
a wary gun-control activist, or by a Martian who happened to land nearby, 
motivated action theory can only assert that either of these scenarios is pos- 
sible, in spite of the higher likelihood of the gun-control activist. To solve 
this problem, motivated action theory would ultimately need to be integrated 
with a theory of abductive inference* 
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A    Proofs 

Lemma 1.1 Let TI be a theory instantiation; let M. be a 
model for TI; and let OCM,TI = (^>^) &e the occurrence kernel 
of M for TI. Then OCM,TI « acceptable and total for TI. 

Proof: 

Acceptable 

OCM,TI = {A,B) is acceptable for TIiff(A,B)TI = TlUAöBUÄ 
is consistent (whenever TI is). In this case, 

A   =   {OCCURS(t,act) | A4 |= OCCURS(t,act)} 

So 

A   =   {-nOCCURS(t,act) | OCCURS(t,act) £ A} 

i.e., 

A   =   {-OCCURS(t,act) | M ^ OCCURS(t,act)} 

And since M. \= <p or M. (= -xp, Vy?, 

Ä   =   {-OCCURS(t,act) | M f= -OCCURS(t,act)} 

Also 

B   =   {HOLDS(T0,state) | M \= HOLDS(T0,state)} 
U   {HOLDS(T0,not(state)) | M (= HOLDS(T0,not(state))} 

Finally, M \= TI by hypothesis.  So M |= TIUAöBöÄ^ 
(A,B)TI, and (A,B)TJ is consistent. 
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Total 

OCM,TI = (-^>-#) is total for TI iff for every ground term y> = 
HOLDS(t, state) or OCCURS(t,act), {A,B)TI h <p or {A,B)TI h 
-iy> Certainly, for <p = OCCURS(t,act), either <p € A (and there- 
fore (A,B)TJ h y?), or (p £ A, (so ->y> G .4) so (A,B)TI I—iy?. 
Where <p = HOLDS(t,state), the proof proceeds by induction on 
the number of time points from TQ to t (which may be arbitrarily 
large but must be finite). 

Base Case: Assume that t = TQ 4- 1. Then by the defini- 
tion of the least time point TQ, Vact.-iOCCURS(To,act). 
Thus, nothing can cause state to change from To to t: if 
HOLDS(T0,state) <E B, (A,B)TJ H HOLDS(t,state); if B 
contains HOLDS(To,not(state)), 
(A,5)T/l-^H0LDS(t,state). 

Induction Hypothesis: Assume that (A,B)TI \- HOLDS(t,state) 
or (A,B)TJ h -.HOLDS(t,state) whenever t - T0 < k, for 
some k. 

Induction Step: Consider t = TQ + k. By the induction hypoth- 
esis either {A,B)TI h  HOLDS(t - 1,state) or (A,B)TI h 
-iHOLDS(t — 1,state).   Assume without loss of generality 
that (A,B)TI I- HOLDS(t - 1,state). 

Now the persistence rule for state looks something like 

Vt.HOLDS(t, state) 
A-> (causex) 

A~> (cause„) 
DHOLDS(t + l, state) 

where cause\...cause n are 

1. OCCURS(t,act)     A     HOLDS(t,precond)       whenever 
CAUSES(act, precond, not(state)), or 

2. a Aß whenever there is a causal rule a Aß D HOLDS(t + 
1, not(state)) 
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We already have {A,B)TI h HOLDS(t,state). In addition, 
caustx...causen all involve times no later than t; so for each 

i, either (A,B)TI r- causey or {A,B)TI b ->causti. If 
(A,B)TI h causei, for some t, then (by the causal rule 
from which causei is derived) HOLDS(t + 1, not(state)); i.e., 
(A,B)TI h ^HOLDS(t+l, state). If (A, B) TI \f causei, for all 
i, then (by the induction hypothesis) (A,B)TI h ->causei and 
so (by the persistence rule) {A,B)TI h HOLDS(t + 1,state). 

Lemma 1.2 Let TI be a theory instantiation; let M be a 
model for TI; and let OCM,TI = (A,B) be the occurrence kernel 
ofM forTI. Then (A,B)TI h (p iff M |= <p 

Proof:   M |= (A,5)r/: 

A4|= 77. 

M \=A: 

M   |=   {OCCURS(t,act) | M |= OCCURS(t,act)} 

A<   |=   {HOLDS(T0,state)| A4 |= HOLDS(T0,state)} 
U {HOLDS(T0,not(state)) | M (= HOLDS(T0,not(state))} 

M \=1: 

M   t= {-. OCCURS(t,act) | OCCURS(t,act) £ A} 
i.e.   {- OCCU RS(t, act) | OCCU RS(t, act) £ A} 
or   {-. OCCU RS(t, act) | M ^ OCCU RS(t, act)} 

So certainly M.\=np whenever {A,B)TI h ^>. But by lemma 1.1, 
OCM,TI = (A,B) is total for TI, so (by the completeness of 
predicate calculus) (A,B)TI\- (p whenever M. \= <p. 
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Theorem 1 Let TI be a theory instantiation; let M be a 
model for TI; and let OCM,Tl = {A,B) be the occurrence kernel 
ofM for TI. Then MOJ((A, B), TI,tp) ifftp is motivated in M. 

Proof:   (By temporal induction) 

Base Case: Assume tp is of the form HOLDS(TQ,state) or 
OCCURS(T0,act). There are two possibilities. If TI \= tp, 
then tp is motivated in M. and also—since TI V tp— 
MOT((A,B), TI,tp). If TI J£ tp, then <p cannot be moti- 
vated in M. since no causal rule can have <p as its conclusion 
(by the definition of TQ as the least time point for TI) and 
no statement containing tp (as a disjunct or inside an exis- 
tential quantifier) can appear in CD (again by definition of 
T0). But then also -^U01({A,B), TI,tp). 

Induction Hypothesis: Assume that (p is motivated in M. iff 
M0T((i4,B), TI,(p) whenever the time point mentioned in 
tp is strictly earlier than k. 

Induction Step: Consider a statement tp with time k; i.e., <p = 
HOLDS(k,state) or tp = OCCURS(k,act). Assume first 
that <p is motivated in M.. Then there are four cases corre- 
sponding to the four types of motivation. If (p is strongly mo- 
tivated, then TI \= tp, so TI h tp, so MOT({A,B), TI,tp). If 
tp is weakly motivated, then there is a causal rule a Aß Dtp E 
T, a is motivated in M., and M. (= ß. By the definition of 
a causal rule, the time of a is earlier than the time of tp, 
hence earlier than k, so MOT((A, B), TI,a); by lemma 1.2, 
(A,B)TI \- ß; so MOJ((A,B), TI,tp). If tp is semi- or exis- 
tentially motivated, then either p G CD or p is the conse- 
quence of a causal rule with a motivated in M. and M.\= ß\ 
then we have M0T((i4, B), TI, a) by the induction hypothe- 
sis and (A, B)TI\- ß by lemma 1.2. Also, whenever M.\= tp, 
(A,B)TI \~ <p (by lemma 1.2). So whenever tp is motivated 
mM,MOT({A,B),TI,tp). 

Conversely, if MOJ({A,B), TI,tp), then tp is motivated in 
M:   If TI h tp, then TI \= tp.   If there is a causal rule 
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of the form ctAßD<p € T with M0T((4,B), 27,a) and 
{A,B)TJ r- ß, then a is motivated in M and M \= ß (by 
the induction hypothesis and lemma 1.2, respectively). And 
whenever (A,B)TI h <p, then (by lemma 1.2), M (= <p. 
So whenever MOJ((A,B), TI,<p), we also have that tp is 
motivated in M.. 

Corollary 1.1 Let TI be a theory instantiation; let M. be a 
model for TI; and let OCMfTI = {A,B) be the occurrence kernel 
ofM for TI. Then unmot(M) - unmot(OCM,Tl) 

Proof:   This follows directly from theorem 1. 

Lemma 2.1 Let TI be a theory instantiation; let (A,B) be 
an occurrence kernel for TI; and let M. be a model of {A, B)TI. 
Then M t= TI. 

Proof: The proof of this is trivial: M \= (A,B)TI means M (= 
TIUAUBUÄ, so M t= TI. 

Lemma 2.2 Let TI be a theory instantiation; let (A, B) be 
an occurrence kernel for TI; and let M be a model of (A,B)TI. 
Then M (= f> iff {A, B) TI h <p. 

Proof: This follows directly from the soundness and complete- 
ness of predicate calculus. 

Theorem 2 Let TI be a theory instantiation; let {A,B) be 
an occurrence kernel for TI; and let M. be a model of {A,B)TI. 
Then <p is motivated in M iff MOT ((A, B), TI,<p). 

Proof:   (By temporal induction) 
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Base Case: Assume tp is HOLDS(T0,state) or OCCURS(T0,act). 
There are two possibilities. If TI f= tp, then tp is moti- 
vated in A4 and also—since TI h (p—MOT((A, B), TI,<p). 
If TI ty= <p, then tp cannot be motivated in A4 since no 
causal rule can have (p as its conclusion (by the definition 
of Tp as the least time point for TI) and no statement con- 
taining tp (as a disjunct or inside an existential quantifier) 
can appear in CD (again by definition of TQ). But then also 
^MOJ((A,B),TI,tp). 

Induction Hypothesis: Assume that tp is motivated in A4 iff 
MOJ((A,B), TI,tp) whenever the time point mentioned in 
<p is strictly earlier than k. 

Induction Step: Consider a statement (p with time k; i.e., tp = 
HOLDS(k, state) or tp = OCCURS(k, act). Assume first 
that tp is motivated in A4. Then there are four cases corre- 
sponding to the four types of motivation. If tp is strongly mo- 
tivated, then TI |= <p, so TI \- <p, so MOJ((A,B), TI,tp). If 
tp is weakly motivated, then there is a causal rule a A/? D <p E 
T, a is motivated in A4, and A4 (= ß. By the definition of 
a causal rule, the time of a is earlier than the time of tp, 
hence earlier than k, so MOT({A, B), TI,a); by lemma 2.2, 
(A,B)TI h /?; so M0T((.4,B), TI,tp). If tp is semi- or eris- 
tentially motivated, then either p G CD or p is the conse- 
quence of a causal rule with a motivated in M. and M. (= /?; 
then we have MOT({vl, B), TI, a) by the induction hypothe- 
sis and (^4, B)TI\- ß by lemma 2.2. Also, whenever M. \= tp, 
(A,B)TI \- tp (by lemma 2.2). So whenever tp is motivated 
in A4, MOT((A,B),TI,tp). 

Conversely, if MOJ((A,B), TI,tp), then tp is motivated in 
M: If TI h tp, then TI (= tp. If there is a causal rule 
of the form a Aß Dtp e T with MOT((A, B), TI,a) and 
(A,B)TI h /?, then a is motivated in M. and A4 (= /? (by 
the induction hypothesis and lemma 2.2, respectively). And 
whenever {A,B)TI h y>, then (by lemma 2.2), M (= tp. 
So whenever MOT((A,B), TI,tp), we also have that tp is 
motivated in A4. 
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Corollary 2.1 Let TI be a theory instantiation; let (A, B) be 
an occurrence kernel for TI; and let A4 be a model of (A,B)TI. 

Then unmot((j4, B)) = unmot(M). 

Proof:   This follows directly from theorem 2. 

Lemma 8.1 Let TI be a theory instantiation; let (A, B) be 
an occurrence kernel for TI; and let M. be a model of (A,B)TJ. 
Then (A, B) is a preferred occurrence kernel iff M. is a preferred 
model. 

Proof: Assume that (A, B) is a preferred occurrence kernel 
of TI, but Af is not a preferred model of TI. Then there is 
some model M! such that unmot(M.') C unmot(Ai). Consider 
OCM',TI the occurrence kernel of M.' for TI. unmot(OCM',Tl) = 
unmot(M') by corollary 1.1. By corollary 2.1, unmot((A,B)) = 
unmot{M.). But \mmo\.({A,B)) = unmot(Ai) C unmot(M.') = 
OCM',TI, and (A,B) is not preferred; contradiction! 

Now assume that (A, B) is not 
preferred, i.e. 3{A', B').\\nmot({Ä, B')) C unmot((A, B}). Con- 
sider M', a model of (A',B'). unmot((A', B')) = unmot(M') 
by corollary 2.1; similarly, unmot((.A, B)) = unmot(M); so 
unmot{M!) C unmot(Ai), and M. is not preferred. 

Lemma 3.2 Let TI be a theory instantiation; let M. be a 
model for TI; and let OCM.TI = M>-B) be the occurrence kernel 
of M. for TI. Then OCM,TI is a preferred occurrence kernel iff 
M. is a preferred model. 

Proof: Since A4 is a model for its occurrence kernel, this is 
simply a special case of the previous lemma. 
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Theorem 3 (Soundness and Completeness) 
Let TI be a theory instantiation, with M*{ TI) the set of preferred 
models for TI, and OC*(TI) the set of preferred occurrence ker- 

nels for TI. Then <p G ^oC*(Ti) *ff <P € ^M*(TI)> f € ^OC(Ti) 
ifffE ^M*(TI)- 

Proof: If <p 6 ^oC*{Ti)i then there is a preferred occurrence 
kernel (A,B) of TI such that {A,B)TI h <p. Consider M, a 
model of (A, B)TI: by lemma 2.2, M (= y>; by lemma 3.1, .M is 
a preferred model of TI. So tp € U^*/r/\. 

Conversely, if y € U^*/T/j, then there is a preferred model 
M( TI) such that M( TI) ]= y>. Consider OCM,TI, the occurrence 
kernel of M for TI: by lemma 1.2, OCM,TI l~ ¥>; by lemma 3.2, 
OCM,TI is a preferred occurrence kernel of TI. So <p £ ^OC*(Tiy 

If y> G n<9c*(TJ)> then every preferred occurrence kernel of T7 sup- 
ports <p. Since preferred occurrence kernels are total, this means 
that no occurrence kernel supports ->tp; i.e., ->y> g" U^*/r/). But 
then -up g" U^*/T/w either, so (since every model entails either <p 
or -up) <p € n^*(T/). 

Similarly, y> € l"\M*(T.n rneans that -iy> g" U^*(Tj), so ->y> 0 
uoc*(r/)5 so y> e noc*(r/)- 


